1. Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev 2011;32:81–151.
5. Miller WL. Disorders in the initial steps in adrenal steroido - genesis. J Steroid Biochem Mol Biol 2017;165:18–37.
6. Miller WL. Genetic disorders of vitamin D biosynthesis and degradation. J Steroid Biochem Mol Biol 2017;165:101–8.
7. Miller WL. Molecular biology of steroid hormone synthesis. Endocr Rev 1988;9:295–318.
8. Voutilainen R, Tapanainen J, Chung B, Matteson KJ, Miller WL. Hormonal regulation of P450scc (20,22 desmolase) and P450c17 (17α-hydroxylase/17,20 lyase) in cultured human granulosa cells. J Clin Endocrinol Metab 1986;63:202–7.
10. Bose HS, Lingappa VR, Miller WL. Rapid regulation of steroidogenesis by mitochondrial protein import. Nature 2002;417:87–91.
11. Toaff ME, Schleyer H, Strauss JF 3rd. Metabolism of 25-hydroxycholesterol by rat luteal mitochondria and dispersed cells. Endocrinology 1982;111:1785–90.
12. Bose HS, Whittal RM, Huang MC, Baldwin MA, Miller WL. N-218 MLN64, a protein with StAR-like steroidogenic ac t iv ity is folde d and cle ave d simi l arly to StAR. Biochemistry 2000;39:11722–31.
13. Cherradi N, Rossier MF, Vallotton MB, Timberg R, Friedberg I, Orly J, et al. Submitochondrial distribution of three key steroidogenic proteins (steroidogenic acute regulatory protein and cytochrome P450scc and 3β-hydroxysteroid dehydrogenase isomerase enzymes) upon stimulation by intracellular calcium in adrenal glomerulosa cells. J Biol Chem 1997;272:7899–907.
15. Shaik S, Cohen S, Wang Y, Chen H, Kumar D, Thiel W. P450 Enzymes: their structure, reactivity, and selectivity—modeled by QM/MM Calculations. Chem Rev 2010;110:949–1017.
16. Nebert DW, Wikvall K, Miller WL. Human cytochromes P450 in health and disease. Phil Trans Roy S oc B 2013;368:20120431.
17. Miller WL. Minireview. Regulation of steroidogenesis by electron transfer. Endocrinology 2005;146:2544–50.
20. Coghlan VM, Vickery LE. Site-specific mutations in human ferredoxin that affect binding to ferredoxin reductase and cytochrome P450scc. J Biol Chem 1991;266:18606–12.
21. Brandt ME, Vickery LE. Expression and characterization of human mitochondrial ferredoxin reductase in Escherichia coli. Arch Biochem Biophys 1992;294:735–40.
22. Bak DW, Elliott SJ. Alternative FeS cluster ligands: tuning redox potentials and chemistry. Curr Opin Chem Biol 2014;19:50–8.
23. Braymer JJ, Lill R. Iron-sulfur biogenesis and trafficking in mitochondria. J Biol Chem 2017;292:12754–63.
27. Rouault TA. Mammalian iron–sulphur proteins: novel insights into biogenesis and function. Nature Rev Mol Cell Biol 2015;16:45–55.
28. Stehling O, Lill R. The role of mitochondria in cellular iron–sulfur protein biogenesis: mechanisms, connected processes, and diseases. Cold Spring Harbor Perspect Biol 2013;5:a011312.
31. Chashchin VL, Lapko VN, Adamovich TB, Kirillova NM, Lapko AG, Akhrem AA. The primary structure of hepatoredoxin from bovine liver mitochondria. Bioorg Khim 1986;12:1286–9.
33. Picado-Leonard J, Voutilainen R, Kao L, Chung B, Strauss JF 3rd, Miller WL. Human adrenodoxin: cloning of three cDNAs and cycloheximide enhancement in JEG-3 cells. J Biol Chem 1988;263:3240–4.
34. Mittal S, Zhu YZ, Vickery LE. Molecular cloning and sequence analysis of human placental ferredoxin. Arch Biochem Biophys 1988;264:383–91.
35. Chang CY, Wu DA, Lai CC, Miller WL, Chung BC. Cloning and structure of the human adrenodoxin gene. DNA 1988;7:609–15.
36. Morel Y, Picado-Leonard J, Wu DA, Chang C, Mohandas TK, Chung B, et al. Assignment of the functional gene for adrenodoxin to chromosome 11q13→qter and of two adrenodoxin pseudogenes to chromosome 20cen→q13.1. Am J Hum Genet 1988;43:52–9.
37. Sparkes RS, Klisak I, Miller WL. Regional mapping of genes encoding human steroidogenic enzymes: P450scc to 15q23-q24, adrenodoxin to 11q22, adrenodoxin reductase to 17q24-q25, and P450c17 to 10q24-q25. DNA Cell Biol 1991;10:359–65.
38. Qi W, Li J, Cowan JA. Human ferredoxin-2 displays a unique conformational change. Dalton Trans 2013;42:3088–91.
39. Sheftel AD, Stehling O, Pierik AJ, Elsasser HP, Muhlenhoff U, Webert H, et al. Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis. Proc Natl Acad Sci USA 2010;107:11775–80.
40. Shi Y, Ghosh M, Kovtunovych G, Crooks DR, Rouault TA. Both human ferredoxins 1 and 2 and ferredoxin reductase are important for iron-sulfur cluster biogenesis. Biochim Biophys Acta 2012;1823:484–92.
41. Cai K, Tonelli M, Frederick RO, Markley JL. Human mitochondrial ferredoxin 1 (FDX1) and ferredoxin 2 (FDX2) both bind cysteine desulfurase and donate electrons for iron-sulfur cluster biosynthesis. Biochemistry 2017;56:487–99.
42. Griffin A, Parajes S, Weger M, Zaucker A, Taylor AE, O’Neil DM, et al. Ferredoxin 1b (Fdx1b) is the essential mitochondrial redox partner for cortisol biosynthesis in zebrafish. Endocrinology 2016;157:1122–34.
43. Oakes JA, Li N, Wistow BRC, Griffin A, Barnard L, Storbeck KH, et al. Ferredoxin 1b deficiency leads to testis disorganization, impaired spermatogenesis and feminization in zebrafish. Endocrinology 2019;160:2401–16.
44. Spiegel R, Saada A, Halvardson J, Soiferman D, Shaag A, Edvardson S, et al. Deleterious mutation in FDX1L gene is associated with a novel mitochondrial muscle myopathy. Euro J Hum Genet 2014;22:902–6.
51. Stenton SL, Piekutowska-Abramczuk D, Kulterer L, Kopajtich R, Claeys KG, Ciara E, et al. Expanding the clinical and genetic spectrum of FDXR deficiency by functional validation of variants of uncertain significance. Human Mutation 2021;42:310–9.
52. Jurkute N, Shanmugarajah PD, Hadjivassiliou M, Higgs J, Vojcic M, Horrocks I, et al. Expanding the FDXR-associated disease phenotype: retinal dystrophy is a recurrent ocular feature. Invest Ophthalmol Vis Sci 2021;62:2.
54. Baker BY, Lin L, Kim CJ, Raza J, Smith CP, Miller WL, et al. Non-classic congenital lipoid adrenal hyperplasia: a new disorder of the steroidogenic acute regulatory protein with very late presentation and normal male genitalia. J Clin Endocrinol Metab 2006;91:4781–5.
55. Sahakitrungruang T, Tee MK, Blackett PR, Miller WL. Partial defect in the cholesterol side-chain cleavage enzyme, P450scc (
CYP11A1) resembling non-classic congenital lipoid adrenal hyperplasia. J Clin Endocrinol Metab 2011;96:792–8.
56. Pandey AV, Flück CE. NADPH P450 oxidoreductase: structure, function, and pathology of diseases. Pharmacol Therap 2013;138:229–54.
58. Ellis J, Gutierrez A, Barsukov IL, Huang WC, Grossmann JG, Roberts GC. Domain motion in cytochrome P450 reductase: conformational equilibria revealed by NMR and small-angle x-ray scattering. J Biol Chem 2009;284:36628–37.
59. Shen AL, O'Leary KA, Kasper CB. Association of multiple developmental defects and embryonic lethality with loss of microsomal NADPH-cytochrome P450 oxidoreductase. J Biol Chem 2002;277:6536–41.
61. Flück CE, Tajima T, Pandey AV, Arlt W, Okuhara K, Verge CF, et al. Mutant P450 oxidoreductase causes disordered steroidogenesis with and without Antley-Bixler syndrome. Nature Genetics 2004;36:228–30.
66. Fukami M, Horikawa R, Nagai T, Tanaka T, Naiki Y, Sato N, et al. Cytochrome P450 oxidoreductase gene mutations and Antley-Bixler syndrome with abnormal genitalia and/or impaired steroidogenesis: molecular and clinical studies in 10 patients. J Clin Endocrinol Metab 2005;90:414–26.
67. Krone N, Reisch N, Idkowiak J, Dhir V, Ivison HE, Hughes BA, et al. Genotype-phenotype analysis in congenital adrenal hyperplasia due to P450 oxidoreductase deficiency. J Clin Endocrinol Metab 2012;97:E257–67.
69. Geller DH, Auchus RJ, Miller WL. P450c17 mutations R347H and R358Q selectively disrupt 17,20 lyase activity by disrupting interactions with P450 oxidoreductase and cytochrome b5. Mol Endocrinol 1999;13:167–75.
70. Adachi M, Tachibana K, Asakura Y, Yamamoto T, Hanaki K, Oka A. Compound heterozygous mutations of cytochrome P450 oxidoreductase gene (POR) in two patients with Antley-Bixler syndrome. Am J Med Genet A 2004;128A:333–9.
71. Fukami M, Hasegawa T, Horikawa R, Ohashi T, Nishimura G, Homma K, et al. Cytochrome P450 oxidoreductase deficiency in three patients initially regarded as having 21-hydroxylase deficiency and/or aromatase deficiency: diagnostic value of urine steroid hormone analysis. Pediatr Res 2006;59:276–80.
72. Shackleton C, Marcos J, Arlt W, Hauffa BP. Prenatal diagnosis of P450 oxidoreductase deficiency (ORD): a disorder causing low pregnancy estriol, maternal and fetal virilization, and the Antley-Bixler syndrome phenotype. Am J Med Genet A 2004;129A:105–12.
73. Pandey AV, Kempna P, Hofer G, Mullis PE, Flück CE. 2007. Modulation of human CYP19A1 activity by mutant NADPH P450 oxidoreductase. Mol Endocrinol 2007;21:2579–95.
74. Auchus RJ. The backdoor pathway to dihydrotestosterone. Trends Endocrinol Metab 2004;15:432–8.
75. Homma K, Hasegawa T, Nagai T, Adachi M, Horikawa R, Fujiwara I, et al. Urine steroid hormone profile analysis in cytochrome P450 oxidoreductase deficiency: implication for the backdoor pathway to dihydrotestosterone. J Clin Endocrinol Metab 2006;91:2643–9.
77. O’Leary KA, Li HC, Ram PA, McQuiddy P, Waxman DJ, Kasper CB. Thyroid regulation of NADPH:cytochrome P450 oxidoreductase: identification of a thyroid-responsive element in the 5’-flank of the oxidoreductase gene. Mol Pharmacol 1997;52:46–53.
78. Li HC, Liu D, Waxman DJ. Transcriptional induction of hepatic NADPH: cytochrome P450 oxidoreductase by thyroid hormone. Mol Pharmacol 2001;59:987–95.
79. Tee MK, Huang N, Damm I, Miller WL. Transcriptional regulation of human P450 oxidoreductase: identification of transcription factors and influence of promoter polymorphisms. Mol Endocrinol 2011;25:715–31.
81. Agrawal V, Huang N, Miller WL. Pharmacogenetics of P450 oxidoreductase. Effect of sequence variants on activities of CYP1A2 and CYP2C19. Pharmacogenet Genomics 2008;18:569–76.
82. Ingelman-Sundberg M. Polymorphism of cytochrome P450 and xenobiotic toxicity. Toxicology 2002;181-182:447–52.
83. Weinshilboum R. Inheritance and drug response. N Engl J Med 2003;348:529–37.
84. Williams PA, Cosme J, Vinkovic DM, Ward A, Angove HC, Day PJ, et al. Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science 2004;305:683–6.
86. Agrawal V, Choi JH, Giacomini KM, Miller WL. Substrate-specific modulation of CYP3A4 activity by genetic variants of cytochrome P450 oxidoreductase (POR). Pharmacogenet Genomics 2010;20:611–8.
87. Sandee D, Morrissey K, Agrawal V, Tam HK, Kramer MA, Tracy TS, et al. Effects of genetic variants of P450 oxidoreductase on catalysis by CYP2D6 in vitro. Pharmacogenet Genomics 2010;20:677–86.
88. Miller WL, Agrawal V, Sandee D, Tee MK, Huang N, Choi JH, et al. Consequences of POR mutations and polymorphisms. Mol Cell Endocrinol 2011;336:174–9.
89. Giordano S, Steggles A. The human liver and reticulocyte cytochrome b5 mRNA's are products from a single gene. Biochim Biophys Res Commun 1991;178:38–44.
90. Shephard EA, Povey S, Spurr NK, Phillips IR. Chromosomal localization of a cytochrome b5 gene to human chromosome 18 and a cytochrome b5 pseudogene to the X chromosome. Genomics 1992;11:302–8.
91. Storbeck KH, Swart AC, Fox CL, Swart P. Cytochrome b5 modulates multiple reactions in steroidogenesis by diverse mechanisms. J Steroid Biochem Mol Biol 2015;151:66–73.
92. Bridges A, Gruenke L, Chang YT, Vakser IA, Loew GH, Waskell L. Identification of the binding site on cytochrome P450 2B4 for cytochrome b5 and cytochrome P450 reductase. J Biol Chem 1998;273:17036–49.
93. Yamazaki H, Johnson WW, Ueng YF, Shimada T, Guengerich FP. Lack of electron transfer from cytochrome b5 in stimulation of catalytic activities of cytochrome P450 3A4. Characterization of a reconstituted cytochrome P450 3A4/NADPH-cytochrome P450 reductase system and studies of apo-cytochrome b5. J Biol Chem 1996;271:27438–44.
94. Auchus RJ, Lee TC, Miller WL. Cytochrome b5 augments the 17,20 lyase activity of human P450c17 without direct electron transfer. J Biol Chem 1998;273:3158–65.
95. Pandey AV, Miller WL. Regulation of 17,20 lyase activity by cytochrome b5 and by serine phosphorylation of P450c17. J Biol Chem 2005;280:13265–71.
96. Yanagibashi K, Hall P. Role of electron transport in the regulation of the lyase activity of C21 side-chain cleavage P-450 from porcine adrenal and testicular microsomes. J Biol Chem 1986;26:8429–33.
97. Lin D, Black SM, Nagahama Y, Miller WL. Steroid 17α-hydroxylase and 17,20 lyase activities of P450c17: contributions of serine106 and of P450 reductase. Endocrinology 1993;132:2498–506.
99. Swart AC, Storbeck KH, Swart P. A single amino acid residue Ala 105, confers 16α-hydroxylase activity to human cytochrome P450 17α-hydroxylase/17,20 lyase. J Steroid Biochem Mol Biol 2010;119:112–20.
100. Sherbet DP, Tiosano D, Kwist KM, Hochberg Z, Auchus RJ. CYP17 mutation E305G causes isolated 17,20 lyase deficiency by selectively altering substrate binding. J Biol Chem 2003;278:48563–9.
102. Pandey AV, Mellon SH, Miller WL. Protein phosphatase 2A and phosphoprotein SET regulate androgen production by P450c17. J Biol Chem 2003;278:2837–44.
103. Tee MK, Miller WL. Phosphorylation of human cytochrome P450c17 by p38α selectively increases 17,20 lyase activity and androgen synthesis. J Biol Chem 2013;288:23903–13.
104. Naffin-Olivos JL, Auchus RJ. Human c ytochrome b5 requires residues E48 and E49 to stimulate the 17,20-lyase activity of cytochrome P450c17. Biochemistry 2006;24:755–62.
105. Miller WL. The syndrome of 17,20 lyase deficiency. J Clin Endocrinol Metab 2012;97:59–67.
106. Hegesh E, Hegesh J, Kaftory A. Congenital methemoglobinemia with deficiency of cytochrome b5. New England J Med 1986;314:757–61.
107. Giordano SJ, Kaftory A, Steggles AW. A splicing mutation in the cytochrome b5 gene from a patient with congenital methemoglobinemia and pseudohermaphroditism. Human Genet 1994;93:568–70.
108. Kok RC, Timmerman MA, Wolfenbuttel KP, Drop SLS, deJong FH. Isolated 17,20 lyase deficiency due to the cytochrome b5 mutation W27X. J Clin Endocrinol Metab 2010;95:994–9.
109. Idkowiak J, Randell T, Dhir V, Patel P, Shackleton CH, Taylor NF, et al. A missense mutation in the human cytochrome b5 gene causes 46,XY disorder of sex development due to true isolated 17,20 lyase deficiency. J Clin Endocrinol Metab 2012;97:E465–75.
110. Leung MT, Cheung HN, Iu YP, Choi CH, Tiu SC, Shek CC. Isolated 17, 20-lyase deficiency in a CYB5A mutated female with normal sexual development and fertility. J Endocr Soc 2020;4:1–8.
111. Shaunak M, Taylor NF, Hunt D, Davies JH. Isolated 17,20 lyase deficiency secondary to a novel CYB5A variant: comparison of steroid metabolomic findings with published cases provides diagnostic guidelines and greater insight into its biological role. Horm Res Paediatr 2020;93:483–95.