1. Di Cesare M, Sorić M, Bovet P, Miranda JJ, Bhutta Z, Stevens GA, et al. The epidemiological burden of obesity in childhood: a worldwide epidemic requiring urgent action. BMC Med 2019;25:212.
3. Gwag SH, Oh YR, Ha JW, Kang E, Nam HK, Lee Y, et al. Weight changes of children in 1 year during COVID-19 pandemic. J Pediatr Endocrinol Metab 2022;35:297–302.
6. Cole TJ. Weight-stature indices to measure underweight, overweight, and obesity. In: Himes JE, editor. Anthropometric assessment of nutritional status. New York: Wiley-Liss; 1991:83-111.
7. Dietz WH, Bellizzi MC. Introduction: the use of body mass index to assess obesity in children. Am J Clin Nutr 1999;70:123S–125S.
8. O’Connor EA, Evans CV, Burda BU, Walsh ES, Eder M, Lozano P. Screening for obesity and intervention for weight management in children and adolescents: evidence report and systematic review for the US Preventive Services Task Force. JAMA 2017;317:2427–44.
9. Cole TJ. Weight/height p compared to weight/height2 for assessing adiposity in childhood: influence of age and bone age on p during puberty. Ann Hum Biol 1986;13:433–51.
10. Burton RF. Why is the body mass index calculated as mass/height2, not as mass/height3? Ann Hum Biol 2007;34:656–63.
11. Heymsfield SB, Heo M, Thomas D, Pietrobelli A. Scaling of body composition to height: relevance to height-normalized indexes. Am J Clin Nutr 2011;93:736–40.
13. De Lorenzo A, Romano L, Di Renzo L, Gualtieri P, Salimei C, Carrano E, et al. Triponderal mass index rather than body mass index: An indicator of high adiposity in Italian children and adolescents. Nutrition 2019;60:41–7.
15. Malavazos AE, Capitanio G, Milani V, Ambrogi F, Matelloni IA, Basilico S, et al. Tri-ponderal mass index vs body mass index in discriminating central obesity and hypertension in adolescents with overweight. Nutr Metab Cardiovasc Dis 2021;31:1613–21.
19. Scavo LM, Karas M, Murray M, Leroith D. Insulin-like growth factor-I stimulates both cell growth and lipogenesis during differentiation of human mesenchymal stem cells into adipocytes. J Clin Endocrinol Metab 2004;89:3543–53.
20. Blüher S, Kratzsch J, Kiess W. Insulin-like growth factor I, growth hormone and insulin in white adipose tissue. Best Pract Res Clin Endocrinol Metab 2005;19:577–87.
25. Haywood N, Slater T, Mattews C, Wheatcrotf S. Ther insulin like growth factor and binding protein family: Novel therapeutic targets in obesity & diabetes. Mol Metab 2019;19:86–96.
28. Cole TJ. The LMS method for constructing mormalized growth standards. Eur J Clin Nutr 1990;44:45–60.
29. Hyun SE, Lee BC, Suh BK, Chung SC, Ko CW, Kim HS, et al. Reference values for serum levels of insulin-like growth factor-1 and insulin-like growth factor binding protein-3 in Korean children and adolescents. Clin Biochem 2012;45:16–21.
31. Touskova V, Trachta P, Kavalkova P, Drapalova J, Haluzikova D, Mraz M, et al. Serum concentrations and tissue expression of components of insulin-like growth factoraxis in females with type 2 diabetes mellitus and obesity: the influence of very-low-calorie diet. Mol Cell Endocrinol 2012;361:172–8.
32. Sirbu A, Gologan S, Arbanas T, Copaescu C, Martin S, Albu A, et al. Adiponectin, body mass index and hepatic steatosis are independently associated with IGF-I status in obese non-diabetic women. Growth Horm IGF Res 2013;23:2–7.
33. Kanazawa I, Yamaguchi T, Sugimoto T. Serum insulin-like growth factor-I is negatively associated with serum adiponectin in type 2 diabetes mellitus. Growth Horm IGF Res 2011;21:268–71.
35. Jones JI, Clemmons DR. Insulin-like growth factor and their binding proteins: biological actions. Endocr Rev 1995;16:3–34.
36. Gaunt TR, Cooper JA, Miller GJ, Day IN. Positive associations between single nucleotide polymorphisms in the IGF-2 gene region and body mass index in adult males. Hum Mol Genet 2001;10:1491–501.
37. Kim HS, Ali O, Shim M, Lee KH, Vuguin P, Muzumdar R, et al. Insulin-like growth factor binding protein-3 induces insulin resistance in adipocytes in vitro and in rats in vivo. Pediatr Res 2007;61:159–64.